Dual self-assembled nanocomposite cathode for protonic ceramic fuel cells

Chunyu Yuana, Xiaofeng Tonga,*,*, Chen Lia, Zesi Suna, Ping Lib, Yumeng Zhanga, Ningling Wanga, Xuesong Shend, Zhongliang Zhanc, Ligang Wanga,

a Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China

b School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China

c Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Technology, University of Science and Technology of China, Hefei 230026, China

d National Center of Technology Innovation for Fuel Cell, Shandong Guochuang Fuel Cell Technology Innovation Center Co., Ltd. Weifang, 261000, China

* Corresponding author: xiaofeng.tong@ncepu.edu.cn
Figure S1. DRT plots of the EIS data from the symmetric cells recorded at 650 °C under different $p\text{O}_2$.
Figure S2. (a) Typical EIS data of single cells measured at 650 °C with 97% H₂-3%H₂O at the anode and wet air at the cathode. (f) DRT plots corresponding to EIS shown in (a).
Figure S3. Cross-sectional SEM images of (a) the single cell, (b) the interface of PNC/BCZY cathode and BCZY electrolyte and (c) the Ni/BCZY anode.
Figure S4. (a) Cross-sectional SEM images of nominal PNC/BCZY cathode. (b) EDS analysis of the nanoparticle.