Supporting information

EXPLORING THE SUBSISTENCE OF SOLVATION CONSEQUENCES OF L-ASPARAGINE AND L-GLUTAMINE PREVAILING IN AQUEOUS IONIC LIQUID SOLUTIONS BY PHYSICOCHEMICAL AND COMPUTATIONAL INVESTIGATIONS

Sukdev Majumder¹, Debadrita Roy¹, Kanak Roy², Mitali kundu¹, Subhankar Choudhury³, Mahendra Nath Roy¹,²,*

¹Department of Chemistry, University of North Bengal, Darjeeling-734013, West Bengal, India.
³Department of Chemistry, Malda College, Malda-732101, India
¹,²*Alipurduar University, Alipurduar, West Bengal, India.

Corresponding author: *Mahendra Nath Roy, Vice-Chancellor, Alipurduar University
E-mail: mahendraroy2002@yahoo.co.in/vcapduniversity@gmail.com
Tel: +91-353-2776381, Fax: +91 353 2699001

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table S1</td>
<td>Page S2</td>
</tr>
<tr>
<td>Table S2</td>
<td>Page S2-S3</td>
</tr>
<tr>
<td>Table S3</td>
<td>Page S4</td>
</tr>
<tr>
<td>Table S4</td>
<td>Page S5-S6</td>
</tr>
<tr>
<td>Table S5</td>
<td>Page S6</td>
</tr>
<tr>
<td>Table S6</td>
<td>Page S7</td>
</tr>
<tr>
<td>Table S7</td>
<td>Page S8-S9</td>
</tr>
<tr>
<td>Table S8</td>
<td>Page S9-S10</td>
</tr>
<tr>
<td>Table S9</td>
<td>Page S10-S11</td>
</tr>
<tr>
<td>Table S10</td>
<td>Page S11-S12</td>
</tr>
<tr>
<td>Table S11</td>
<td>Page S12</td>
</tr>
<tr>
<td>Table S12</td>
<td>Page S12-S13</td>
</tr>
<tr>
<td>Table S13</td>
<td>Page S13</td>
</tr>
<tr>
<td>Table S14</td>
<td>Page S14</td>
</tr>
<tr>
<td>Table S15</td>
<td>Page S14</td>
</tr>
<tr>
<td>Table S16</td>
<td>Page S15</td>
</tr>
<tr>
<td>Table S17</td>
<td>Page S16-S17</td>
</tr>
<tr>
<td>Table S18</td>
<td>Page S17</td>
</tr>
<tr>
<td>Table S19</td>
<td>Page S17</td>
</tr>
<tr>
<td>Fig. No</td>
<td>Page No.</td>
</tr>
<tr>
<td>Fig S1</td>
<td>Page S18</td>
</tr>
<tr>
<td>Fig S2</td>
<td>Page S19</td>
</tr>
</tbody>
</table>
Tables

Table S1. Experimental density (ρ), viscosity (η) and molar refraction (R_M) of different molality (0.001, 0.003, 0.005) mol·kg$^{-1}$ of aqueous (BTBAC) ionic liquid solutions at temperatures T = (293.15 - 313.15) K at atmospheric pressure 0.1MPa a,b

<table>
<thead>
<tr>
<th>Molality of BTBAC(IL) /mol·kg$^{-1}$</th>
<th>T(K)</th>
<th>$10^3 \cdot \rho$/(kg·m$^{-3}$)</th>
<th>η/(mPa·s)</th>
<th>R_M/(m3·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>293.15K</td>
<td>0.99832</td>
<td>0.953</td>
<td>26.92</td>
</tr>
<tr>
<td></td>
<td>298.15K</td>
<td>0.99709</td>
<td>0.913</td>
<td>26.90</td>
</tr>
<tr>
<td>0.001</td>
<td>303.15K</td>
<td>0.99574</td>
<td>0.876</td>
<td>26.89</td>
</tr>
<tr>
<td></td>
<td>308.15K</td>
<td>0.99410</td>
<td>0.839</td>
<td>26.88</td>
</tr>
<tr>
<td></td>
<td>313.15K</td>
<td>0.99223</td>
<td>0.786</td>
<td>26.85</td>
</tr>
<tr>
<td></td>
<td>293.15K</td>
<td>0.99838</td>
<td>0.961</td>
<td>26.93</td>
</tr>
<tr>
<td></td>
<td>298.15K</td>
<td>0.99715</td>
<td>0.921</td>
<td>26.91</td>
</tr>
<tr>
<td>0.003</td>
<td>303.15K</td>
<td>0.99580</td>
<td>0.880</td>
<td>26.91</td>
</tr>
<tr>
<td></td>
<td>308.15K</td>
<td>0.99415</td>
<td>0.846</td>
<td>26.90</td>
</tr>
<tr>
<td></td>
<td>313.15K</td>
<td>0.99230</td>
<td>0.790</td>
<td>26.88</td>
</tr>
<tr>
<td></td>
<td>293.15K</td>
<td>0.99845</td>
<td>0.972</td>
<td>26.93</td>
</tr>
<tr>
<td></td>
<td>298.15K</td>
<td>0.99722</td>
<td>0.930</td>
<td>26.92</td>
</tr>
<tr>
<td>0.005</td>
<td>303.15K</td>
<td>0.99589</td>
<td>0.893</td>
<td>26.92</td>
</tr>
<tr>
<td></td>
<td>308.15K</td>
<td>0.99419</td>
<td>0.853</td>
<td>26.91</td>
</tr>
<tr>
<td></td>
<td>313.15K</td>
<td>0.99238</td>
<td>0.798</td>
<td>26.89</td>
</tr>
</tbody>
</table>

a Standard uncertainties u are $u(\rho) = 0.00037$ g·cm$^{-3}$, $u(T) = 0.01K$, $u(P) = 0.01$MPa, $u(\eta) = 0.022$ mPa·S., $u(nD) = 0.0005$. b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol·kg$^{-1}$. c Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Symbol ‘[IL]’ denotes as molality of ionic liquid. Wave length of light source for refractive index measurement was, $\lambda = 589.3$ nm.
Table S2. Experimental values of refractive index (n_D) and specific conductance (κ) of different molality (0.001, 0.003, 0.005) mol·kg$^{-1}$ of aqueous IL (BTBAC) solutions at temperatures $T=(293.15 - 313.15)$ K at atmospheric pressure 0.1MPa a,b

<table>
<thead>
<tr>
<th>Molality of BTBAC(IL)/ (mol·kg$^{-1}$)</th>
<th>T/K</th>
<th>n_D</th>
<th>κ/(mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>293.15K</td>
<td>1.3322</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>298.15K</td>
<td>1.3320</td>
<td>0.105</td>
</tr>
<tr>
<td>0.001</td>
<td>303.15K</td>
<td>1.3319</td>
<td>0.171</td>
</tr>
<tr>
<td></td>
<td>308.15K</td>
<td>1.3317</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>313.15K</td>
<td>1.3314</td>
<td>0.329</td>
</tr>
<tr>
<td></td>
<td>293.15K</td>
<td>1.3324</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>298.15K</td>
<td>1.3322</td>
<td>0.203</td>
</tr>
<tr>
<td>0.003</td>
<td>303.15K</td>
<td>1.3321</td>
<td>0.243</td>
</tr>
<tr>
<td></td>
<td>308.15K</td>
<td>1.3320</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td>313.15K</td>
<td>1.3318</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>293.15K</td>
<td>1.3325</td>
<td>0.172</td>
</tr>
<tr>
<td></td>
<td>298.15K</td>
<td>1.3324</td>
<td>0.255</td>
</tr>
<tr>
<td>0.005</td>
<td>303.15K</td>
<td>1.3323</td>
<td>0.327</td>
</tr>
<tr>
<td></td>
<td>308.15K</td>
<td>1.3321</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td>313.15K</td>
<td>1.3319</td>
<td>0.468</td>
</tr>
</tbody>
</table>

a Standard uncertainties u are $u(\rho) = 0.00037$ g.cm$^{-3}$, $u(T) = 0.01K$, $u(P)=0.01$MPa, $u(\kappa)=0.021$(mScm$^{-1}$), $u(n_D) = 0.0005$ and $u(T) = 0.01K$, b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol·kg$^{-1}$. c Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Wavelength of light source for refractive index measurement was, $\lambda=589.3$nm. Symbol ‘[IL]’ denotes as ionic liquid.
Table S3. Density (ρ) of L-Asn in aqueous (BTBAC) ionic liquid solutions at temperatures $T= (293.15 - 313.15)$ K at atmospheric pressure 0.1MPa a,b

<table>
<thead>
<tr>
<th>Molality of L-Asn in Aq. BTBAC(IL) / (mol·kg$^{-1}$)</th>
<th>$T=293.15$K $10^{-3}\rho$ (kg·m$^{-3}$)</th>
<th>$T=298.15$K $10^{-3}\rho$ (kg·m$^{-3}$)</th>
<th>$T=303.15$K $10^{-3}\rho$ (kg·m$^{-3}$)</th>
<th>$T=308.15$K $10^{-3}\rho$ (kg·m$^{-3}$)</th>
<th>$T=313.15$K $10^{-3}\rho$ (kg·m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asn+ 0.001 mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.99887</td>
<td>0.99761</td>
<td>0.99624</td>
<td>0.99459</td>
<td>0.99270</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99972</td>
<td>0.99843</td>
<td>0.99702</td>
<td>0.99536</td>
<td>0.99345</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00057</td>
<td>0.99926</td>
<td>0.99782</td>
<td>0.99615</td>
<td>0.99420</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00145</td>
<td>1.00008</td>
<td>0.99862</td>
<td>0.99697</td>
<td>0.99499</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00233</td>
<td>1.00090</td>
<td>0.99945</td>
<td>0.99781</td>
<td>0.99579</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00322</td>
<td>1.00178</td>
<td>1.00029</td>
<td>0.99866</td>
<td>0.99662</td>
</tr>
<tr>
<td>L-Asn+ 0.003 mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.99892</td>
<td>0.99766</td>
<td>0.99629</td>
<td>0.99463</td>
<td>0.99276</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99977</td>
<td>0.99847</td>
<td>0.99706</td>
<td>0.99540</td>
<td>0.99349</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00061</td>
<td>0.99929</td>
<td>0.99786</td>
<td>0.99618</td>
<td>0.99424</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00148</td>
<td>1.00014</td>
<td>0.99870</td>
<td>0.99700</td>
<td>0.99502</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00236</td>
<td>1.00101</td>
<td>0.99950</td>
<td>0.99783</td>
<td>0.99584</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00325</td>
<td>1.00190</td>
<td>1.00035</td>
<td>0.99870</td>
<td>0.99666</td>
</tr>
<tr>
<td>L-Asn+ 0.005 mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.99898</td>
<td>0.99772</td>
<td>0.99638</td>
<td>0.99466</td>
<td>0.99283</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99981</td>
<td>0.99851</td>
<td>0.99712</td>
<td>0.99544</td>
<td>0.99356</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00065</td>
<td>0.99934</td>
<td>0.99792</td>
<td>0.99623</td>
<td>0.99430</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00151</td>
<td>1.00020</td>
<td>0.99871</td>
<td>0.99705</td>
<td>0.99509</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00239</td>
<td>1.00110</td>
<td>0.99954</td>
<td>0.99787</td>
<td>0.99590</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00328</td>
<td>1.00198</td>
<td>1.00044</td>
<td>0.99873</td>
<td>0.99673</td>
</tr>
</tbody>
</table>

a Standard uncertainties u are $u(\rho) = 0.00037$ g.cm$^{-3}$, $u(T) = 0.01$K, $u(P) = 0.01$MPa

b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg$^{-1}$.

c Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Symbol ‘[IL]’ denotes as ionic liquid.
Table S4. Density (ρ) of L-Gln in aqueous (BTBAC) ionic liquid solutions at temperatures $T= (293.15 - 313.15)$ K at atmospheric pressure 0.1MPa a,b

<table>
<thead>
<tr>
<th>Molality of L-Gln in Aq. BTBAC(IL)/ (mol·kg$^{-1}$)</th>
<th>$T=293.15K$</th>
<th>$T=298.15K$</th>
<th>$T=303.15K$</th>
<th>$T=308.15K$</th>
<th>$T=313.15K$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$10^{-3}\rho$ (kg·m$^{-3}$)</td>
<td>$10^{-3}\rho$ (kg·m$^{-3}$)</td>
<td>$10^{-3}\rho$ (kg·m$^{-3}$)</td>
<td>$10^{-3}\rho$ (kg·m$^{-3}$)</td>
<td>$10^{-3}\rho$ (kg·m$^{-3}$)</td>
</tr>
<tr>
<td>L-Gln+ 0.001mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.99890</td>
<td>0.99764</td>
<td>0.99628</td>
<td>0.99463</td>
<td>0.99275</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99979</td>
<td>0.99849</td>
<td>0.99712</td>
<td>0.99546</td>
<td>0.99357</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00071</td>
<td>0.99938</td>
<td>0.99801</td>
<td>0.99633</td>
<td>0.99443</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00162</td>
<td>1.00026</td>
<td>0.99889</td>
<td>0.99722</td>
<td>0.99530</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00253</td>
<td>1.00118</td>
<td>0.99982</td>
<td>0.99816</td>
<td>0.99627</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00346</td>
<td>1.00211</td>
<td>1.00075</td>
<td>0.99909</td>
<td>0.99722</td>
</tr>
<tr>
<td>L-Gln+ 0.003mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.99895</td>
<td>0.99769</td>
<td>0.99633</td>
<td>0.99467</td>
<td>0.99281</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99982</td>
<td>0.99853</td>
<td>0.99716</td>
<td>0.99549</td>
<td>0.99363</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00074</td>
<td>0.99942</td>
<td>0.99803</td>
<td>0.99635</td>
<td>0.99447</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00164</td>
<td>1.00031</td>
<td>0.99892</td>
<td>0.99723</td>
<td>0.99534</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00255</td>
<td>1.00122</td>
<td>0.99984</td>
<td>0.99817</td>
<td>0.99630</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00348</td>
<td>1.00215</td>
<td>1.00078</td>
<td>0.99912</td>
<td>0.99725</td>
</tr>
<tr>
<td>L-Gln+ 0.005mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.99901</td>
<td>0.99775</td>
<td>0.99641</td>
<td>0.99470</td>
<td>0.99288</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99987</td>
<td>0.99858</td>
<td>0.99723</td>
<td>0.99551</td>
<td>0.99368</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00078</td>
<td>0.99946</td>
<td>0.99810</td>
<td>0.99636</td>
<td>0.99452</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00167</td>
<td>1.00037</td>
<td>0.99899</td>
<td>0.99724</td>
<td>0.99537</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00257</td>
<td>1.00128</td>
<td>0.99992</td>
<td>0.99820</td>
<td>0.99633</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00350</td>
<td>1.00221</td>
<td>1.00086</td>
<td>0.99915</td>
<td>0.99728</td>
</tr>
</tbody>
</table>

a Standard uncertainties u are $u(\rho) = 0.00037$ g·cm$^{-3}$, $u(T) = 0.01K$, $u(P)=0.01$MPa, b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg$^{-1}$. c Molality for the above system has been stated per kg of (IL + water) as
a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Symbol ‘[IL]’ denotes as ionic liquid.

Table S5. Density (ρ) of L-Asn and L-Gln in aqueous solutions at temperatures $T= (293.15 - 313.15)$ K at atmospheric pressure 0.1MPa$^a, b$

<table>
<thead>
<tr>
<th>Molality of Amino acid(AA) in Aq. Soln./(mol·kg$^{-1}$)</th>
<th>$T=293.15K$ 10$^{-3}$ ρ (kg·m$^{-3}$)</th>
<th>$T=298.15K$ 10$^{-3}$ ρ (kg·m$^{-3}$)</th>
<th>$T=303.15K$ 10$^{-3}$ ρ (kg·m$^{-3}$)</th>
<th>$T=308.15K$ 10$^{-3}$ ρ (kg·m$^{-3}$)</th>
<th>$T=313.15K$ 10$^{-3}$ ρ (kg·m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asn+ Aq. Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.99823</td>
<td>0.99704</td>
<td>0.99567</td>
<td>0.99405</td>
<td>0.99219</td>
</tr>
<tr>
<td>0.010</td>
<td>0.99880</td>
<td>0.99758</td>
<td>0.99619</td>
<td>0.99456</td>
<td>0.99268</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99962</td>
<td>0.99837</td>
<td>0.99696</td>
<td>0.99531</td>
<td>0.99341</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00049</td>
<td>0.99921</td>
<td>0.99777</td>
<td>0.99612</td>
<td>0.99419</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00134</td>
<td>1.00002</td>
<td>0.99856</td>
<td>0.99690</td>
<td>0.99495</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00221</td>
<td>1.00087</td>
<td>0.99940</td>
<td>0.99772</td>
<td>0.99574</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00315</td>
<td>1.00176</td>
<td>1.00028</td>
<td>0.99860</td>
<td>0.99659</td>
</tr>
<tr>
<td>L-Gln+ Aq. Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.99882</td>
<td>0.99760</td>
<td>0.99622</td>
<td>0.99459</td>
<td>0.99272</td>
</tr>
<tr>
<td>0.025</td>
<td>0.99971</td>
<td>0.99845</td>
<td>0.99706</td>
<td>0.99542</td>
<td>0.99354</td>
</tr>
<tr>
<td>0.040</td>
<td>1.00065</td>
<td>0.99935</td>
<td>0.99795</td>
<td>0.99628</td>
<td>0.99438</td>
</tr>
<tr>
<td>0.055</td>
<td>1.00156</td>
<td>1.00023</td>
<td>0.99882</td>
<td>0.99716</td>
<td>0.99524</td>
</tr>
<tr>
<td>0.070</td>
<td>1.00248</td>
<td>1.00115</td>
<td>0.99974</td>
<td>0.99810</td>
<td>0.99618</td>
</tr>
<tr>
<td>0.085</td>
<td>1.00341</td>
<td>1.00208</td>
<td>1.00067</td>
<td>0.99901</td>
<td>0.99710</td>
</tr>
</tbody>
</table>

a Standard uncertainties u are $u(\rho) = 0.00037$ g·cm$^{-3}$, $u (T) = 0.01K$, $u(P)=0.01$MPa, b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg$^{-1}$. (0.68 denotes as the level of confidence of the measurements), Symbol [AA], denotes as amino acid.
Table S6. Viscosity (η) and Molar refraction (R_M) of L-Asn in aqueous (BTBAC) ionic liquid solutions at temperatures $T =$ (293.15 - 313.15) K at atmospheric pressure 0.1MPa c.

<table>
<thead>
<tr>
<th>Molality of L-Asn in Aq. BTBAC(IL) / (mol·kg$^{-1}$)</th>
<th>T=293.15K η (Pa·s) R_M</th>
<th>T=298.15K η(mPa·s) R_M</th>
<th>T=303.15K η(mPa·s) R_M</th>
<th>T=308.15K η(mPa·s) R_M</th>
<th>T=313.15K η(mPa·s) R_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asn+ 0.001mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.959</td>
<td>27.17</td>
<td>0.919</td>
<td>27.18</td>
<td>0.882</td>
</tr>
<tr>
<td>0.025</td>
<td>0.965</td>
<td>27.16</td>
<td>0.925</td>
<td>27.17</td>
<td>0.888</td>
</tr>
<tr>
<td>0.040</td>
<td>0.970</td>
<td>27.15</td>
<td>0.931</td>
<td>27.17</td>
<td>0.894</td>
</tr>
<tr>
<td>0.055</td>
<td>0.975</td>
<td>27.14</td>
<td>0.936</td>
<td>27.16</td>
<td>0.899</td>
</tr>
<tr>
<td>0.070</td>
<td>0.980</td>
<td>27.13</td>
<td>0.941</td>
<td>27.15</td>
<td>0.905</td>
</tr>
<tr>
<td>0.085</td>
<td>0.984</td>
<td>27.12</td>
<td>0.946</td>
<td>27.15</td>
<td>0.910</td>
</tr>
<tr>
<td>L-Asn+ 0.003mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.967</td>
<td>27.18</td>
<td>0.926</td>
<td>27.20</td>
<td>0.885</td>
</tr>
<tr>
<td>0.025</td>
<td>0.974</td>
<td>27.17</td>
<td>0.932</td>
<td>27.19</td>
<td>0.892</td>
</tr>
<tr>
<td>0.040</td>
<td>0.980</td>
<td>27.16</td>
<td>0.938</td>
<td>27.18</td>
<td>0.898</td>
</tr>
<tr>
<td>0.055</td>
<td>0.985</td>
<td>27.15</td>
<td>0.943</td>
<td>27.17</td>
<td>0.904</td>
</tr>
<tr>
<td>0.070</td>
<td>0.990</td>
<td>27.14</td>
<td>0.948</td>
<td>27.16</td>
<td>0.909</td>
</tr>
<tr>
<td>0.085</td>
<td>0.995</td>
<td>27.13</td>
<td>0.954</td>
<td>27.16</td>
<td>0.915</td>
</tr>
<tr>
<td>L-Asn+ 0.005mol· kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.978</td>
<td>27.19</td>
<td>0.935</td>
<td>27.21</td>
<td>0.898</td>
</tr>
<tr>
<td>0.025</td>
<td>0.985</td>
<td>27.18</td>
<td>0.941</td>
<td>27.20</td>
<td>0.904</td>
</tr>
<tr>
<td>0.040</td>
<td>0.992</td>
<td>27.17</td>
<td>0.947</td>
<td>27.19</td>
<td>0.910</td>
</tr>
<tr>
<td>0.055</td>
<td>0.997</td>
<td>27.17</td>
<td>0.952</td>
<td>27.18</td>
<td>0.916</td>
</tr>
<tr>
<td>0.070</td>
<td>1.003</td>
<td>27.16</td>
<td>0.958</td>
<td>27.17</td>
<td>0.922</td>
</tr>
<tr>
<td>0.085</td>
<td>1.008</td>
<td>27.15</td>
<td>0.964</td>
<td>27.17</td>
<td>0.929</td>
</tr>
</tbody>
</table>

c Standard uncertainties u are $u (\eta)=0.022$ mPa·S., $u (T) = 0.01$K, $u (P)=0.01$MPa b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol·kg$^{-1}$. c Molality for the above system has been stated per kg of (IL + water) as
a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Symbol ‘[IL]’
denotes as ionic liquid.

Table S7. Viscosity (η) and Molar refraction (R_M) of L-Gln in aqueous (BTBAC) ionic liquid
solutions at temperatures $T= (293.15 -313.15) \text{ K}$ at atmospheric pressure 0.1MPa c*,b

| Molality of L-Gln in Aq. BTBAC(IL)/ (mol·kg$^{-1}$) | $T=293.15K$ | $T=298.15K$ | $T=303.15K$ | $T=308.15K$ | $T=313.15K$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η (Pa·s)</td>
<td>R_M</td>
<td>η (mPa·s)</td>
<td>R_M</td>
<td>η (mPa·s)</td>
</tr>
<tr>
<td>L-Gln+ 0.001mol·kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.961</td>
<td>30.04</td>
<td>0.921</td>
<td>30.07</td>
<td>0.884</td>
</tr>
<tr>
<td>0.025</td>
<td>0.969</td>
<td>30.03</td>
<td>0.930</td>
<td>30.05</td>
<td>0.893</td>
</tr>
<tr>
<td>0.040</td>
<td>0.977</td>
<td>30.01</td>
<td>0.939</td>
<td>30.04</td>
<td>0.902</td>
</tr>
<tr>
<td>0.055</td>
<td>0.985</td>
<td>30.00</td>
<td>0.948</td>
<td>30.03</td>
<td>0.912</td>
</tr>
<tr>
<td>0.070</td>
<td>0.994</td>
<td>29.99</td>
<td>0.956</td>
<td>30.03</td>
<td>0.921</td>
</tr>
<tr>
<td>0.085</td>
<td>1.002</td>
<td>29.98</td>
<td>0.965</td>
<td>30.01</td>
<td>0.929</td>
</tr>
<tr>
<td>L-Gln+ 0.003mol·kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.969</td>
<td>30.05</td>
<td>0.929</td>
<td>30.07</td>
<td>0.888</td>
</tr>
<tr>
<td>0.025</td>
<td>0.978</td>
<td>30.00</td>
<td>0.938</td>
<td>30.06</td>
<td>0.896</td>
</tr>
<tr>
<td>0.040</td>
<td>0.987</td>
<td>30.02</td>
<td>0.947</td>
<td>30.05</td>
<td>0.906</td>
</tr>
<tr>
<td>0.055</td>
<td>0.996</td>
<td>30.01</td>
<td>0.957</td>
<td>30.04</td>
<td>0.917</td>
</tr>
<tr>
<td>0.070</td>
<td>1.005</td>
<td>30.00</td>
<td>0.967</td>
<td>30.03</td>
<td>0.926</td>
</tr>
<tr>
<td>0.085</td>
<td>1.014</td>
<td>29.99</td>
<td>0.977</td>
<td>30.03</td>
<td>0.936</td>
</tr>
<tr>
<td>L-Gln+ 0.005mol·kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.980</td>
<td>30.07</td>
<td>0.939</td>
<td>30.09</td>
<td>0.900</td>
</tr>
<tr>
<td>0.025</td>
<td>0.990</td>
<td>30.06</td>
<td>0.949</td>
<td>30.07</td>
<td>0.909</td>
</tr>
<tr>
<td>0.040</td>
<td>1.000</td>
<td>30.05</td>
<td>0.960</td>
<td>30.06</td>
<td>0.919</td>
</tr>
<tr>
<td>0.055</td>
<td>1.010</td>
<td>30.04</td>
<td>0.970</td>
<td>30.05</td>
<td>0.929</td>
</tr>
<tr>
<td>0.070</td>
<td>1.021</td>
<td>30.02</td>
<td>0.980</td>
<td>30.04</td>
<td>0.939</td>
</tr>
<tr>
<td>0.085</td>
<td>1.029</td>
<td>30.02</td>
<td>0.990</td>
<td>30.04</td>
<td>0.950</td>
</tr>
</tbody>
</table>
Standard uncertainties u are $u(\eta)=0.022\ \text{mPa}\cdot\text{S}$, $(T)=0.01\text{K}$, $u(P)=0.01\text{MPa}$. Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 $\text{mol}\cdot\text{kg}^{-1}$. Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Symbol ‘[IL]’ denotes as ionic liquid.

Table S8. Apparent molar volume, (V_ϕ) and $(\eta/\eta^0 - 1)/\sqrt{m}$ of L-Asn solution in (0.001, 0.003, 0.005) $\text{mol} \cdot \text{kg}^{-1}$ aqueous BTBAC solution at temperatures $T=\{293.15, \ldots, 313.15\}\text{K}$ temperatures and at atmospheric pressure 0.1MPa.a.b.

<table>
<thead>
<tr>
<th>Molality of L-Asn (AA) in Aq. BTBAC (IL)/(mol·kg⁻¹)</th>
<th>$T=293.15\text{K}$</th>
<th>$T=298.15\text{K}$</th>
<th>$T=303.15\text{K}$</th>
<th>$T=308.15\text{K}$</th>
<th>$T=313.15\text{K}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$10^6\cdot V_\phi/\sqrt{m}$</td>
<td>$10^6\cdot V_\phi/(\eta/\eta^0 - 1)/\sqrt{m}$</td>
<td>$10^6\cdot V_\phi/(\eta/\eta^0 - 1)/\sqrt{m}$</td>
<td>$10^6\cdot V_\phi/(\eta/\eta^0 - 1)/\sqrt{m}$</td>
<td>$10^6\cdot V_\phi/(\eta/\eta^0 - 1)/\sqrt{m}$</td>
</tr>
<tr>
<td>L-Asn+ 0.001 mol·kg⁻¹ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>77.58</td>
<td>0.063</td>
<td>80.35</td>
<td>0.066</td>
<td>82.47</td>
</tr>
<tr>
<td>0.025</td>
<td>76.84</td>
<td>0.079</td>
<td>79.04</td>
<td>0.083</td>
<td>81.31</td>
</tr>
<tr>
<td>0.040</td>
<td>76.20</td>
<td>0.089</td>
<td>78.19</td>
<td>0.098</td>
<td>80.40</td>
</tr>
<tr>
<td>0.055</td>
<td>75.59</td>
<td>0.098</td>
<td>77.63</td>
<td>0.107</td>
<td>79.64</td>
</tr>
<tr>
<td>0.070</td>
<td>75.21</td>
<td>0.107</td>
<td>76.94</td>
<td>0.115</td>
<td>78.94</td>
</tr>
<tr>
<td>0.085</td>
<td>74.85</td>
<td>0.111</td>
<td>76.34</td>
<td>0.123</td>
<td>78.34</td>
</tr>
<tr>
<td>L-Asn+ 0.003 mol·kg⁻¹ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>78.58</td>
<td>0.062</td>
<td>81.36</td>
<td>0.054</td>
<td>83.43</td>
</tr>
<tr>
<td>0.025</td>
<td>77.24</td>
<td>0.085</td>
<td>79.75</td>
<td>0.075</td>
<td>81.91</td>
</tr>
<tr>
<td>0.040</td>
<td>76.71</td>
<td>0.099</td>
<td>78.81</td>
<td>0.092</td>
<td>80.88</td>
</tr>
<tr>
<td>0.055</td>
<td>76.13</td>
<td>0.106</td>
<td>77.98</td>
<td>0.101</td>
<td>79.89</td>
</tr>
<tr>
<td>0.070</td>
<td>75.64</td>
<td>0.114</td>
<td>76.20</td>
<td>0.110</td>
<td>79.10</td>
</tr>
<tr>
<td>0.085</td>
<td>75.20</td>
<td>0.121</td>
<td>76.45</td>
<td>0.122</td>
<td>78.34</td>
</tr>
<tr>
<td>L-Asn + 0.005 mol·kg⁻¹ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>79.57</td>
<td>0.062</td>
<td>82.42</td>
<td>0.054</td>
<td>84.94</td>
</tr>
<tr>
<td>Molality of L-Gln (AA) in Aq. BTBAC(IL)/ (mol·kg⁻¹)</td>
<td>(T = 293.15) K</td>
<td>(T = 298.15) K</td>
<td>(T = 303.15) K</td>
<td>(T = 308.15) K</td>
<td>(T = 313.15) K</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>(10^6 \cdot \phi) / ((\eta / \eta^0 - 1)) / (m)</td>
<td>(10^6 \cdot \phi) / ((\eta / \eta^0 - 1)) / (m)</td>
<td>(10^6 \cdot \phi) / ((\eta / \eta^0 - 1)) / (m)</td>
<td>(10^6 \cdot \phi) / ((\eta / \eta^0 - 1)) / (m)</td>
<td>(10^6 \cdot \phi) / ((\eta / \eta^0 - 1)) / (m)</td>
</tr>
<tr>
<td>L-Gln+ 0.001mol·kg⁻¹ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>88.36</td>
<td>0.084</td>
<td>91.40</td>
<td>0.087</td>
<td>92.46</td>
</tr>
<tr>
<td>0.025</td>
<td>87.26</td>
<td>0.106</td>
<td>90.11</td>
<td>0.117</td>
<td>90.97</td>
</tr>
<tr>
<td>0.040</td>
<td>86.78</td>
<td>0.126</td>
<td>89.12</td>
<td>0.142</td>
<td>89.47</td>
</tr>
<tr>
<td>0.055</td>
<td>86.14</td>
<td>0.143</td>
<td>88.35</td>
<td>0.163</td>
<td>88.56</td>
</tr>
<tr>
<td>0.070</td>
<td>85.68</td>
<td>0.162</td>
<td>87.44</td>
<td>0.177</td>
<td>87.62</td>
</tr>
<tr>
<td>0.085</td>
<td>85.27</td>
<td>0.175</td>
<td>86.73</td>
<td>0.194</td>
<td>86.88</td>
</tr>
<tr>
<td>L-Gln+ 0.003mol·kg⁻¹ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>89.36</td>
<td>0.083</td>
<td>92.40</td>
<td>0.087</td>
<td>93.46</td>
</tr>
<tr>
<td>0.025</td>
<td>88.46</td>
<td>0.112</td>
<td>90.92</td>
<td>0.116</td>
<td>91.77</td>
</tr>
<tr>
<td>0.040</td>
<td>87.53</td>
<td>0.135</td>
<td>89.63</td>
<td>0.141</td>
<td>90.47</td>
</tr>
</tbody>
</table>

\(^c\) Standard uncertainties \(u \) are \((V φ) = 5 \times 10^{-5} \text{ m}^3\cdot\text{mol}^{-1} \), \((\eta) = 0.022 \text{ mPa} \cdot \text{S} \), \((T) = 0.01 \text{K} \), \(u (P) = 0.01 \text{MPa} \), \(^b\) Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol·kg⁻¹. \(^c\) molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Symbol ‘[AA]’ denotes as Amino acid. Symbol ‘[IL]’ denotes as ionic liquid.

Table S9. Apparent molar volume, \((V φ) \) and \((\eta/\eta^0 - 1)/\sqrt{m} \) of L-Gln solution in (0.001, 0.003 ,0.005) mol·kg⁻¹ in aqueous (BTBAC) solution at different temperatures \(T = (293.15 - 313.15) \text{K} \) at atmospheric pressure 0.1MPa \(^c\), \(^b\).
<table>
<thead>
<tr>
<th>L-Gln + 0.005mol· kg⁻¹ aq. BTBAC Soln.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
</tr>
<tr>
<td>0.025</td>
</tr>
<tr>
<td>0.040</td>
</tr>
<tr>
<td>0.055</td>
</tr>
<tr>
<td>0.070</td>
</tr>
<tr>
<td>0.085</td>
</tr>
</tbody>
</table>

Standard uncertainties \(u \) are \(u(V\varphi) = 5 \times 10^{-5} \text{ m}^3\text{ mol}^{-1} \), \(u(\eta) = 0.022 \text{ mPa} \cdot \text{s} \), \(T = 0.01 \text{K} \), \(u(P) = 0.01 \text{MPa} \). Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg⁻¹. Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Symbol ‘[AA]’ denotes as Amino acid. Symbol ‘[IL]’ denotes as ionic liquid.

Table S10. Apparent molar volume, \(V\varphi \) of L-Asn/L-Gln in aqueous solution at different temperatures \(T = (293.15 - 313.15) \text{ K} \) at atmospheric pressure 0.1MPa c.

<table>
<thead>
<tr>
<th>Molality of Amino acid (AA) in Aq. Soln./(mol·kg⁻¹)</th>
<th>(T=293.15 \text{K})</th>
<th>(T=298.15 \text{K})</th>
<th>(T=303.15 \text{K})</th>
<th>(T=308.15 \text{K})</th>
<th>(T=313.15 \text{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(10^6 V\varphi)</td>
</tr>
<tr>
<td></td>
<td>/(m³·mol⁻¹)</td>
<td>/(m³·mol⁻¹)</td>
<td>/(m³·mol⁻¹)</td>
<td>/(m³·mol⁻¹)</td>
<td>/(m³·mol⁻¹)</td>
</tr>
<tr>
<td>L-Asn + Aq. Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>77.09</td>
<td>80.04</td>
<td>82.02</td>
<td>83.05</td>
<td>85.07</td>
</tr>
<tr>
<td>0.025</td>
<td>76.45</td>
<td>78.89</td>
<td>80.54</td>
<td>81.80</td>
<td>83.49</td>
</tr>
<tr>
<td>0.040</td>
<td>75.94</td>
<td>78.21</td>
<td>80.00</td>
<td>80.79</td>
<td>82.61</td>
</tr>
<tr>
<td>0.055</td>
<td>75.37</td>
<td>77.78</td>
<td>79.46</td>
<td>80.24</td>
<td>81.96</td>
</tr>
<tr>
<td>0.070</td>
<td>75.00</td>
<td>77.48</td>
<td>78.65</td>
<td>79.56</td>
<td>81.35</td>
</tr>
<tr>
<td>0.085</td>
<td>74.56</td>
<td>76.92</td>
<td>78.24</td>
<td>78.99</td>
<td>80.81</td>
</tr>
<tr>
<td>L-Gln + Aq. Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>87.54</td>
<td>90.57</td>
<td>91.62</td>
<td>92.68</td>
<td>93.76</td>
</tr>
<tr>
<td>0.025</td>
<td>86.86</td>
<td>89.71</td>
<td>90.56</td>
<td>91.43</td>
<td>92.31</td>
</tr>
</tbody>
</table>

511
Table S11. Data of limiting molar expansibilities \((E^0_\phi)\) for (L-Asn+ Aq. BTBAC) system in aqueous soln. of BTBAC at temperatures \(T = (293.15 - 313.15)\) K and at atmospheric pressure \(0.1\text{MPa}^{a,b}\)

<table>
<thead>
<tr>
<th>Molality of BTBAC(IL) /((\text{mol}\cdot\text{kg}^{-1}))</th>
<th>(T=293.15\text{K})</th>
<th>(T=298.15\text{K})</th>
<th>(T=303.15\text{K})</th>
<th>(T=308.15\text{K})</th>
<th>(T=313.15\text{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^6\cdot E^0_\phi/\text{(m}^3\cdot\text{mol}^{-1}\cdot\text{K}^{-1}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.6232(0.6050)d</td>
<td>0.5282</td>
<td>0.4332</td>
<td>0.3382</td>
<td>0.2432</td>
</tr>
<tr>
<td>0.003</td>
<td>0.6513</td>
<td>0.5443</td>
<td>0.4373</td>
<td>0.3303</td>
<td>0.2233</td>
</tr>
<tr>
<td>0.005</td>
<td>0.7346</td>
<td>0.5936</td>
<td>0.4526</td>
<td>0.3116</td>
<td>0.1706</td>
</tr>
</tbody>
</table>

\(^a\) Standard uncertainties \(u\) are \(u(V_\phi) = 5 \times 10^{-5} \text{m}^3\cdot\text{mol}^{-1}\), \((T) = 0.01\text{K}, u(P)= 0.01\text{MPa}, \). Symbol ‘[AA]’ denotes as amino acid. (0.68 denotes as the level of confidence of the measurements).

\(^b\) Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). \(^d\) This Value was taken from ref.26.

Table S12. Data of limiting molar expansibilities \((E^0_\phi)\) for (L-Gln+ Aq. BTBAC) system in aqueous solutions of IL (BTBAC) at temperatures \(T= (293.15 - 313.15)\) K at atmospheric pressure \(0.1\text{MPa}^{a,b}\)

<table>
<thead>
<tr>
<th>Molality of BTBAC(IL) /((\text{mol}\cdot\text{kg}^{-1}))</th>
<th>(T=293.15\text{K})</th>
<th>(T=298.15\text{K})</th>
<th>(T=303.15\text{K})</th>
<th>(T=308.15\text{K})</th>
<th>(T=313.15\text{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^6\cdot E^0_\phi/\text{(m}^3\cdot\text{mol}^{-1}\cdot\text{K}^{-1}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\delta E^0_\phi/\delta T)_P \cdot 10^6/\text{(m}^3\cdot\text{mol}^{-1}\cdot\text{K}^{-2}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Standard uncertainties \(u\) are \(u(T) = 0.01\text{K}, u(P)= 0.01\text{MPa}, \). Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg\(^{-1}\).
Table S13. Limiting apparent molar volumes (V_φ^0), experimental slopes (S_V^*), of L-Asn/L-Gln in aqueous solutions at various working temperatures and atmospheric pressure at 0.1 MPa.

<table>
<thead>
<tr>
<th>Temperature/K</th>
<th>$10^6 \cdot V_\varphi^0 / (m^3 \cdot mol^{-1})$</th>
<th>$10^6 \cdot S_V^* / (m^3 \cdot mol^{-3/2} \cdot kg^{1/2})$</th>
<th>$10^6 \cdot V_\varphi^0 / (m^3 \cdot mol^{-1})$</th>
<th>$10^6 \cdot S_V^* / (m^3 \cdot mol^{-3/2} \cdot kg^{1/2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>293.15</td>
<td>78.52</td>
<td>-13.35</td>
<td>89.07</td>
<td>-15.00</td>
</tr>
<tr>
<td>298.15</td>
<td>81.58</td>
<td>-16.31</td>
<td>92.93</td>
<td>-21.66</td>
</tr>
<tr>
<td>303.15</td>
<td>83.84</td>
<td>-19.26</td>
<td>94.20</td>
<td>-24.39</td>
</tr>
<tr>
<td>308.15</td>
<td>85.15</td>
<td>-21.13</td>
<td>95.69</td>
<td>-28.18</td>
</tr>
<tr>
<td>313.15</td>
<td>87.11</td>
<td>-21.88</td>
<td>96.86</td>
<td>-29.47</td>
</tr>
</tbody>
</table>

a Standard uncertainties u are $u (T) = 0.01K$, $u (P)= 0.01MPa$. b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg$^{-1}$. c Molality for the above system has been stated per kg of (IL + water) as a solvent mixture,(0.68 denotes as the level of confidence of the measurements). e This value was taken from ref (72). Symbol ‘[IL]’ denotes as ionic liquid.

Table S14. The values of viscosity B-coefficients and dB/dT of L-Asn solution in different concentrations of IL at temperatures $T= (293.15 - 313.15)$ K at atmospheric pressure 0.1 MPa.

<table>
<thead>
<tr>
<th>Temperature /K</th>
<th>L-Asn in 0.001 mol· kg$^{-1}$ aq. BTBAC Soln.</th>
<th>L-Asn in 0.003 mol· kg$^{-1}$ aq. BTBAC Soln.</th>
<th>L-Asn in 0.005 mol· kg$^{-1}$ aq. BTBAC Soln.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>293.15</td>
<td>0.253</td>
<td>0.296</td>
<td>0.336</td>
</tr>
<tr>
<td>298.15</td>
<td>0.301</td>
<td>0.346</td>
<td>0.364</td>
</tr>
<tr>
<td>303.15</td>
<td>0.335</td>
<td>0.400</td>
<td>0.421</td>
</tr>
<tr>
<td></td>
<td>dB/dT</td>
<td>dB/dT</td>
<td>dB/dT</td>
</tr>
<tr>
<td>293.15</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>298.15</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>303.15</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
</tr>
</tbody>
</table>

S13
Table S15. The values of viscosity B-coefficients and dB/dT of L-Gln solution in different concentrations of IL at temperatures $T= (293.15 - 313.15)$ K at atmospheric pressure 0.1 MPa.a

<table>
<thead>
<tr>
<th>Temperature /K</th>
<th>L-Gln in 0.001 mol·kg$^{-1}$ aq. BTBAC Soln.</th>
<th>L-Gln in 0.003 mol·kg$^{-1}$ aq. BTBAC Soln.</th>
<th>L-Gln in 0.005 mol·kg$^{-1}$ aq. BTBAC Soln.</th>
<th>dB/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>293.15</td>
<td>0.481</td>
<td>0.549</td>
<td>0.628</td>
<td>0.014</td>
</tr>
<tr>
<td>298.15</td>
<td>0.555</td>
<td>0.631</td>
<td>0.684</td>
<td>0.013</td>
</tr>
<tr>
<td>303.15</td>
<td>0.614</td>
<td>0.679</td>
<td>0.712</td>
<td>0.012</td>
</tr>
<tr>
<td>308.15</td>
<td>0.689</td>
<td>0.735</td>
<td>0.782</td>
<td></td>
</tr>
<tr>
<td>313.15</td>
<td>0.768</td>
<td>0.839</td>
<td>0.900</td>
<td></td>
</tr>
</tbody>
</table>

a Standard uncertainties u are $u(T) = 0.01K$, $u(P)= 0.01MPa$, $u(\eta)= 0.022 mPa\cdot S$. b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg$^{-1}$. c Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements).

Table S16. Refractive index (n_D) and specific electrical conductivity (κ) of L-Asn in aqueous IL (BTBAC) solution at different temperatures $T= (293.15 - 313.15)$K at atmospheric pressure 0.1MPa a,b

<table>
<thead>
<tr>
<th>Molality of L-Asn (AA) in Aq. BTBAC(IL)/(mol·kg$^{-1}$)</th>
<th>$T=293.15K$</th>
<th>$T=298.15K$</th>
<th>$T=303.15K$</th>
<th>$T=308.15K$</th>
<th>$T=313.15K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_D κ (mS/cm)</td>
</tr>
<tr>
<td>L-Asn + 0.001 mol·kg$^{-1}$ aq. BTBAC Soln.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>Refractive Index (n_D)</td>
<td>Specific Electrical Conductivity (κ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>1.3325 0.457 1.3322 0.482 1.3321 0.503 1.3319 0.520 1.3317 0.553</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>1.3326 0.517 1.3324 0.574 1.3322 0.590 1.3321 0.615 1.3318 0.657</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td>1.3328 0.570 1.3326 0.653 1.3324 0.683 1.3323 0.709 1.3320 0.773</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.055</td>
<td>1.3330 0.635 1.3328 0.749 1.3326 0.776 1.3325 0.796 1.3322 0.859</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td>1.3332 0.698 1.3330 0.826 1.3328 0.859 1.3327 0.888 1.3324 0.951</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.085</td>
<td>1.3334 0.860 1.3333 0.920 1.3331 0.943 1.3330 0.983 1.3326 1.098</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L-Asn + 0.003 mol· kg$^{-1}$ aq. BTBAC Soln.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Refractive Index (n_D)</th>
<th>Specific Electrical Conductivity (κ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>1.3326 0.516 1.3324 0.545 1.3323 0.572 1.3321 0.607 1.3319 0.639</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>1.3328 0.603 1.3326 0.634 1.3324 0.663 1.3322 0.714 1.3320 0.753</td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td>1.3330 0.678 1.3328 0.720 1.3326 0.765 1.3324 0.809 1.3322 0.884</td>
<td></td>
</tr>
<tr>
<td>0.055</td>
<td>1.3332 0.716 1.3330 0.812 1.3328 0.854 1.3326 0.913 1.3324 0.954</td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td>1.3334 0.783 1.3332 0.903 1.3330 0.935 1.3329 0.999 1.3326 1.128</td>
<td></td>
</tr>
<tr>
<td>0.085</td>
<td>1.3336 0.934 1.3335 0.997 1.3333 1.052 1.3331 1.080 1.3328 1.153</td>
<td></td>
</tr>
</tbody>
</table>

L-Asn + 0.005 mol· kg$^{-1}$ aq. BTBAC Soln.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Refractive Index (n_D)</th>
<th>Specific Electrical Conductivity (κ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>1.3328 0.589 1.3326 0.660 1.3325 0.748 1.3322 0.813 1.3321 0.899</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>1.3330 0.728 1.3327 0.771 1.3326 0.832 1.3323 0.889 1.3322 0.937</td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td>1.3332 0.805 1.3329 0.870 1.3328 0.917 1.3325 0.967 1.3323 1.045</td>
<td></td>
</tr>
<tr>
<td>0.055</td>
<td>1.3334 0.886 1.3331 0.965 1.3330 1.020 1.3327 1.040 1.3325 1.109</td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td>1.3336 1.021 1.3333 1.053 1.3332 1.080 1.3329 1.123 1.3327 1.268</td>
<td></td>
</tr>
<tr>
<td>0.085</td>
<td>1.3339 1.070 1.3336 1.114 1.3335 1.163 1.3332 1.210 1.3329 1.380</td>
<td></td>
</tr>
</tbody>
</table>

a standard uncertainties u are $u(T) = 0.01K$, $u(P) = 0.01MPa$, $u(k) = 0.021(mScm^{-1})$, $u(n_D) = 0.0005$. b Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg$^{-1}$. c Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, (0.68 denotes as the level of confidence of the measurements). Wave length of light source for refractive index measurement was, $\lambda = 589.3nm$. Symbol ‘[IL]’ denotes as ionic liquid.

Table S17. Refractive index (n_D) and specific electrical conductivity (κ) of L-Gln in aqueous IL (BTBAC) solution at different temperatures $T= (293.15 - 313.15) K$ at atmospheric pressure 0.01MPa a,b
Molality of L-Gln (AA) in Aq. BTBAC(IL)/ (mol·kg⁻¹)

<table>
<thead>
<tr>
<th>T=293.15K</th>
<th>T=298.15K</th>
<th>T=303.15K</th>
<th>T=308.15K</th>
<th>T=313.15K</th>
</tr>
</thead>
<tbody>
<tr>
<td>nD κ (mS/cm)</td>
</tr>
</tbody>
</table>

L-Gln + 0.001 mol· kg⁻¹ aq. BTBAC Soln.

0.010	1.3324	0.331	1.3322	0.352	1.3320	0.382	1.3318	0.410	1.3315	0.452
0.025	1.3325	0.408	1.3323	0.453	1.3321	0.486	1.3319	0.523	1.3317	0.553
0.040	1.3327	0.479	1.3325	0.557	1.3323	0.582	1.3321	0.614	1.3319	0.662
0.055	1.3329	0.551	1.3327	0.640	1.3325	0.692	1.3323	0.710	1.3321	0.769
0.070	1.3331	0.646	1.3330	0.756	1.3327	0.790	1.3325	0.819	1.3324	0.865
0.085	1.3333	0.733	1.3332	0.847	1.3330	0.896	1.3328	0.903	1.3327	0.994

L-Gln + 0.003 mol· kg⁻¹ aq. BTBAC Soln.

0.010	1.3325	0.419	1.3323	0.441	1.3321	0.463	1.3319	0.496	1.3316	0.536
0.025	1.3326	0.492	1.3325	0.543	1.3322	0.570	1.3320	0.597	1.3318	0.642
0.040	1.3328	0.619	1.3327	0.683	1.3324	0.702	1.3322	0.724	1.3320	0.764
0.055	1.3330	0.713	1.3329	0.784	1.3326	0.819	1.3324	0.821	1.3322	0.806
0.070	1.3332	0.809	1.3331	0.902	1.3328	0.923	1.3326	0.943	1.3325	1.035
0.085	1.3334	0.868	1.3334	0.975	1.3330	1.030	1.3329	1.050	1.3327	1.155

L-Gln + 0.005 mol· kg⁻¹ aq. BTBAC Soln.

0.010	1.3327	0.513	1.3325	0.542	1.3324	0.582	1.3322	0.612	1.3318	0.654
0.025	1.3329	0.592	1.3326	0.641	1.3325	0.670	1.3323	0.690	1.3319	0.728
0.040	1.3331	0.692	1.3328	0.768	1.3327	0.774	1.3325	0.796	1.3321	0.867
0.055	1.3333	0.768	1.3330	0.871	1.3329	0.876	1.3327	0.906	1.3323	1.003
0.070	1.3335	0.911	1.3332	0.980	1.3331	0.989	1.3329	1.010	1.3326	1.128
0.085	1.3338	0.990	1.3335	1.060	1.3333	1.080	1.3332	1.090	1.3328	1.186

\(^a\) Standard uncertainties \(u\) are \(u(T) = 0.01\), \(u(P) = 0.01\)MPa, \(u(k) = 0.021\) (mScm⁻¹), \(u(n_D) = 0.0005\). \(^b\) Standard uncertainty in molality considering the purity of mass of the studied samples is expected to be about 0.0003 mol· kg⁻¹. \(^c\) Molality for the above system has been stated per kg of (IL + water) as a solvent mixture, \((0.68\) denotes as the level of confidence of the measurements). Wave length of light source for refractive index measurement was, \(\lambda = 589.3\)nm. Symbol '[IL]' denotes as ionic liquid.
Table S18. UV-Vis Spectroscopic data for the Benesi-Hildebrand double reciprocal plot of (BTBAC+L-Asn) system at 298.15K.

<table>
<thead>
<tr>
<th>Tem./K</th>
<th>IL/μM</th>
<th>[AA] μM</th>
<th>A₀</th>
<th>A</th>
<th>ΔA</th>
<th>[AA]/M⁻¹</th>
<th>1/ΔA</th>
<th>Intercept</th>
<th>slope</th>
<th>Ka/M⁻¹×10⁻³</th>
<th>ΔG/kJ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>20</td>
<td>0.44027</td>
<td>0.45956</td>
<td>0.01929</td>
<td>0.0500</td>
<td>51.8403</td>
<td>5.9241</td>
<td>919.52</td>
<td>6.44</td>
<td>-16.03</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>40</td>
<td>0.44207</td>
<td>0.47520</td>
<td>0.03493</td>
<td>0.0250</td>
<td>28.6286</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>298.15</td>
<td>300</td>
<td>60</td>
<td>0.44207</td>
<td>0.48683</td>
<td>0.04656</td>
<td>0.0166</td>
<td>21.4776</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>80</td>
<td>0.44207</td>
<td>0.49470</td>
<td>0.05443</td>
<td>0.0125</td>
<td>18.3621</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>0.44207</td>
<td>0.50515</td>
<td>0.06488</td>
<td>0.0100</td>
<td>15.4130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>120</td>
<td>0.44207</td>
<td>0.52294</td>
<td>0.08267</td>
<td>0.0088</td>
<td>12.0962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard uncertainty of u(T) = 0.01K

Table S19. UV-Vis Spectroscopic data for the Benesi-Hildebrand double reciprocal plot of (BTBAC+L-Gln) system at 298.15K.

<table>
<thead>
<tr>
<th>Tem./K</th>
<th>IL/μM</th>
<th>[AA] μM</th>
<th>A₀</th>
<th>A</th>
<th>ΔA</th>
<th>[AA]/M⁻¹</th>
<th>1/ΔA</th>
<th>Intercept</th>
<th>slope</th>
<th>Ka/M⁻¹×10⁻³</th>
<th>ΔG/kJ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>20</td>
<td>0.44027</td>
<td>0.48763</td>
<td>0.03881</td>
<td>0.0500</td>
<td>25.7665</td>
<td>6.3179</td>
<td>392.59</td>
<td>16.09</td>
<td>-18.30</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>40</td>
<td>0.44207</td>
<td>0.50090</td>
<td>0.06063</td>
<td>0.0250</td>
<td>16.4927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>298.15</td>
<td>300</td>
<td>60</td>
<td>0.44207</td>
<td>0.51862</td>
<td>0.07835</td>
<td>0.0166</td>
<td>12.7632</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>80</td>
<td>0.44207</td>
<td>0.52547</td>
<td>0.08520</td>
<td>0.0125</td>
<td>11.7370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>0.44207</td>
<td>0.53865</td>
<td>0.09859</td>
<td>0.0100</td>
<td>10.1424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>120</td>
<td>0.44207</td>
<td>0.55208</td>
<td>0.11184</td>
<td>0.0088</td>
<td>8.9410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard uncertainty of u(T) = 0.01K
Figure S1. Benesi double reciprocal plot of (BTBAC+L-Asn) system
Figure S2. Benesi double reciprocal plot of (BTBAC+L-Gln) system

\[y = 392.59x + 6.3179 \]
\[R^2 = 0.9963 \]