Supplementary Materials

Twisting Aromaticity and Photoinduced Dynamics in Hexapole Helicenes

Victor M. Freixas1†, Nicolas Oldani2†, Sergei Tretiak3, and Sebastian Fernandez-Alberti2*

1Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
2Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
3Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

*corresponding author: sfalberti@gmail.com
Figure S1. Superposition of snapshots obtained from ground-state molecular dynamics indicating conformational flexibility of the molecules.
Figure S2. The twisting angles, indicated as red lines, are defined by the two carbon atoms and the two bond midpoints (black circles). The three nonfused C-C bonds for the benzene ring B are: C(1)-C(6), C(2)-C(3), and C(4)-C(5), the other three C-C bonds are fused bonds, equivalent definition corresponds to benzene rings C and D.
Figure S3. Evolution of twisting angles during non-adiabatic excited dynamics for different isomers of the hexapole [5]helicene.
Figure S4. Probability density function corresponding to the ensemble of initial conditions of the energy gap between a) S_7 and S_6 states and b) S_3 and S_2.
Figure S5. Average fraction of transition density in the C₁ and C₂ isomers, δᵢ, in different [5]helicene units as a function of delay time (t-t_hop), relative to the moment of nonadiabatic transitions S₇→S₆ and S₃→S₂. Blue lines correspond to the [5]helicene unit with the largest twisting angle (~36°) and red lines correspond to the net contribution of the other two fragments.
Figure S6. Evolution in time of the fraction of transition density, δ^T_X, localized over each type of atom depicted in the insets for a) C_1, b) C_2, and c) D_3 isomers.