Revealing Deformation Mechanisms in Polymer Grafted Thermoplastic Elastomers via In Situ Small-Angle X-Ray Scattering

Vincent M. Torres, a Erik Furton, b Jensen N. Sevening, b Elisabeth C. Lloyd, b Masafumi Fukuto, c Ruipeng Li, c Darren C. Pagan, b Allison M. Beese, b,d,e Bryan D. Vogt, f,* Robert J. Hickey b,e,*

a Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

b Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

c National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, United States

d Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16801, United States

e Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

f Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

*Corresponding authors: rjh64@psu.edu and bdv5051@psu.edu
1. SAXS Fitting

![Figure S1](image)

Figure S1. 1D SAXS plots with a spheroid form factor and a hard sphere structure factor derived from the Percus-Yevick approximation fit for the (a, b) undeformed and (c, d) strained neat SBS sample ($\phi_{SBS} = 100\%$) in q_x and q_y directions. 1D SAXS plots for undeformed neat SBS samples in the (a) q_x and (b) q_y directions. 1D SAXS plots for strained neat SBS samples in the (c) q_x ($\varepsilon = 130\%$) and (b) q_y ($\varepsilon = 150\%$) directions.
Figure S2. A plot indicating the change in scatterer size (i.e., PS sphere) with respect to strain in q_x and q_y directions for the neat SBS sample ($\phi_{\text{SBS}} = 100\%$). The scatterer size values and standard deviations were determined from the SAXS fits.
2. 1H NMR

Figure S3. 1H NMR spectra of the dried, neat SBS sample ($\phi_{SBS} = 100\%$) after dog bone formation. The neat SBS dog bone sample was dissolved in CDC13. The THF wt% in the sample, calculated from the integration values (e.g., of PS (6.3 – 7.2 ppm), PBD (5 ppm, 5.5 ppm), and THF (3.7 ppm)), was calculated to be less than 1 wt%.