SUSTAINING INFORMATION

Sustainable Papermaking in China: Assessing Provincial Economic and Environmental Performance of Pulping Technologies

Qian-long Hana,1, Hai-long Zhaob,1, Guo-xia Weic, Yu-wen Zhua*, Tong Lia, Mao Xub, Xin Guod, Hui-zhen Shia, Yi Liane, Han-qiao Liua*

aSchool of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China

bState Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China

cCollege of Science, Tianjin Chengjian University, Tianjin, 300384, China

dUNEP-TONGJI Institute of Environment for Sustainable Development, College of Environmental Sciences and Engineering, Tongji University, Shanghai 200000, China

ePlanning and Design Institute Co., Ltd, Tianjin, 300000, China

1These authors contributed equally: Qian-long Han, Hai-long Zhao

Contact detail of corresponding author, zhuyw@tcu.edu.cn, lhqlkx@126.com

1 table, 6 figures, 5 pages
Results

1.1. Sensitivity analysis of paper from the four pulping operations

1.1.1. Environmental analysis

![Fig. S1. Sensitivity analysis results of four pulping. (a) PCMP. (b) PCP. (c) PBMP. (d) PWPP](image)

1.1.2. Economic analysis

<table>
<thead>
<tr>
<th>Items</th>
<th>Factors</th>
<th>PCMP</th>
<th>PCP</th>
<th>PBMP</th>
<th>PWPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomes</td>
<td>price of the paper</td>
<td>-262.0%</td>
<td>-270.0%</td>
<td>-166.2%</td>
<td>-266.3%</td>
</tr>
<tr>
<td></td>
<td>price of the produced energy</td>
<td>/</td>
<td>-108.0%</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>cost</td>
<td>capital cost</td>
<td>20.1%</td>
<td>39.7%</td>
<td>7.3%</td>
<td>7.7%</td>
</tr>
<tr>
<td></td>
<td>feedstock</td>
<td>74.2%</td>
<td>145.0%</td>
<td>30.6%</td>
<td>116.1%</td>
</tr>
<tr>
<td></td>
<td>energy consumption</td>
<td>52.7%</td>
<td>89.5%</td>
<td>29.7%</td>
<td>39.1%</td>
</tr>
<tr>
<td></td>
<td>labor costs</td>
<td>7.9%</td>
<td>8.9%</td>
<td>3.7%</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

1.2. Scenario analysis of BL and PS treatment technologies
1.2.1. Characterization and normalization results of BL management

Fig. S2. Contributions of inputs and outputs to environmental indicators. (a) System 1. (b) System 2. (c) System 3

Fig. S3. Comparative environmental performances of three systems.
1.2.2. Characterization and normalization results of PS management

(a) PS-to-paperboard

(b) PS-to-heat

Fig. S4. ECER values of three systems. (a) System 1. (b) System 2. (c) System 3
Fig. S5. Contributions of inputs and outputs to environmental indicators. (a) PS-to-paperboard. (b) PS-to-heat. (c) PS-to-landfill

Fig. S6. Comparative environmental performances of three PS treatment methods. (a) normalized value. (b) ECER value